Analysis of Space Shuttle Main Engine Data Using
Beacon-based Exception Analysis for Multi-Missions»

Han Park, Ryan Mackey, Mark James, Michail Zak
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
Han.G.Park @jpl.nasa.gov

Michael Kynard, John Sebghati, William Greene
Marshall Space Flight Center
Huntsville, AL 35812

Abstract—This paper describes analysis of the Space Shuttle
Main Engine (SSME) sensor data using Beacon-based
Exception Analysis for Multimissions (BEAM), a new
technology developed for sensor analysis and diagnostics in
autonomous space systems by the Jet Propulsion Laboratory
(JPL). BEAM anomaly detection system has been applied
to SSME in a joint effort between JPL and Marshall Space
Flight Center (MSFC). MSFC is evaluating BEAM as an
automated tool for rapid analysis of SSME post-ground test
data.

BEAM is an end-to-end method of data analysis intended for
real-time and non-real-time anomaly detection and
characterization. For the SSME application, a custom
version of BEAM was built to analyze data gathered during
ground tests. Since BEAM consists of modular components,
a custom version can be tailored to address specific
applications and needs by mixing-and-matching
components. The initial build of BEAM focuses on signal
processing and contains three components: Coherence-
based Fault Detector (CFD), Dynamical Invariant Anomaly
Detector (DIAD), and Symbolic Data Model (SDM).

This paper describes the software environment, its training
steps, and the analysis results of the SSME data using the
DIAD module. DIAD detects anomalies by computing and
examining the coefficients of an auto-regressive model, i.e.,
dynamical invariants. The types of anomalies that can be
detected by DIAD are reported such as anomalous sensors,
subtle and sudden performance shifts.

! 0-7803-7231-X/01/$10.00/© 2002 IEEE
® [EEEAC paper #008, Updated Sept 27, 2001

TABLE OF CONTENTS

INTRODUCTION

BEAM OVERVIEW

DYNAMICAL INVARIANT ANOMALY DETECTOR
SPACE SHUTTLE MAIN ENGINE

TRAINING

RESULTS

CONCLUSION

Nounkw e~

1. INTRODUCTION

The Space Shuttle Main Engine (SSME) is one of the most
complex pieces of machinery in operation today. Since it is
a safety critical element of the Space Shuttle, it must be
tested and certified on a ground test stand before each flight.
After each ground test, the results are carefully analyzed for
anomalies. Currently, the analysis is conducted primarily by
hand, and it relies on the expertise of the data analyst. To
reduce time and cost, Marshall Space Flight Center (MSFC)
has been ecvaluating new computational tools that may
improve the productivity of the analyst by automating much
of the analysis.

Beacon-based Exception Analysis for Multimissions
(BEAM) is one of the tools that MSFC has been evaluating.
Developed at the Jet Propulsion Laboratory (JPL), BEAM
is an end-to-end system of data analysis intended for real-
time and off-line anomaly detection and characterization.
BEAM was originally developed as an on-board diagnostic
system to allow the spacecraft to perform an accurate and
timely self-diagnosis. Its compact and modular lends itself
naturally to ground-based deployment. Since BEAM
consists of modular components, a custom version can be
tailored to address specific needs via mixing-and-matching
of various components. A custom version of BEAM was
built for rapid off-line evaluation of the SSME ground test

data. The initial architecture of BEAM for the SSME
application focuses on signal processing and contains three
components: Coherence-based Fault Detector (CFD),
Dynamical Invariant Anomaly Detector (DIAD), and
Symbolic Data Model (SDM).

This paper describes the software environment, its training
steps, and the analysis results of the DIAD component of
BEAM. DIAD detects anomalies by computing and
examining the coefficients of an auto-regressive model. The
results for some of the more common types of anomalies
encountered during SSME testing, such as anomalous
sensors, subtle and sudden performance shifts, are presented.

2. BEAM OVERVIEW

BEAM is a complete data analysis system for real-time or
off-line fault detection and characterization. While the
originally intended for generic system analysis on-board
deep space probes and other highly automated systems, the
compact and modular nature of its subroutines naturally
lends itself to ground-based deployment. For the SSME
application, BEAM was used as an automated graphical tool
for analysis of the post-ground test data.

The basic premise of BEAM is to construct a strategy to
characterize a system from all available observations, and
train such characterization with respect to normal phases of
operation. In this regard, the BEAM engine functions much
as a human operator. Through experience and other
available resources (known architecture, models, simulation,
etc.) an allowed set of behavior is “learned” and deviations
from this are noted and examined. Such sophisticated
approach should be applied as a complement to less
complex traditional monitors and alarms found in nearly all
instrumented systems. The approach should also be
constructed such that information products can be used to
drive autonomous decisions or to support the decisions of
human operators. In other words, the system must alert and
provide support for intervention wherever possible.
Otherwise, it will be difficult for spacecraft experts to gain
trust in the system, and the benefits of BEAM or any similar
cost-saving approach will be doomed from the outset. In
this manner BEAM is not only suited to beacon monitoring
but also more broadly applicable to monitored or wholly
autonomous systems.

At the simplest level of abstraction, BEAM is software,
which takes data as input and reports fault status as output.
Implementation of this software dependents on the
application, but a typical application would have a system
with a number of individual components, each of which
reports health or performance data to a local computer. To
accommodate such a wide range of possibilities, the
computational engine of BEAM itself is highly adaptable
with respect to subsystem size and complexity.

For each single compartment or subsystem, we can expect to
receive four types of data:

1. Discrete status variables changing in time — modes,
switch positions, health bits, etc. — from sensors or
software

2. Real-valued sensor data varying at fixed rates —
performance sensors or dedicated diagnostic sensors

3. Command information — typically discrete as in 1.

4. TFixed parameters — varying only when commanded
to change but containing important state information

These types of data are all valuable but used in different
ways. Status variables and commands are useful to a
symbolic model. Commands and fixed parameters are used
in a physical system model while the time-varying sensor
data are used in signal processing components. An optimal
strategy must take each of these into account and produce a
single, unified decision. In order to study each and combine
results, we propose the following BEAM architecture.
(Figure 1)

Grouped System Invariants Mode Projection
Signals
) Coherence »
Fault Detector; MG
Sensor Data
——p{ Modsl L
Filter Fealyre Parametersy
Dynamical
| Invariant Prognostic Interpretation
" A ly A Layer
Signals Detector
Implicat
Signals 4
Discrete Data
Predicted State
Y i - Causal Source
» Data u| Predictive b System Hypothesis

Comparator

Model Model

Figure 1. Top-level BEAM architecture.

A simple description of each module is given as follows. A
more complete description can be found in [1].

1. Model Filter (MF): Receives sensor or other
quantitative data, conditions it in terms of synchronicity
or drop-outs, and combines results with physics model
(simulation) predictions.

2. Coherence Detector (CD): Receives multiple
conditioned quantitative signals and performs anomaly
detection using cross-signal statistical features.

3. Dynamical Invariant Anomaly Detector (DIAD):
Receives a single quantitative signal one at a time and
performs anomaly detection using a parametric estimate
of the residuals. ‘

4. Informed Maintenance Grid (IMG): Combines outputs

from the Coherence Detector over long operating
periods to detect subthreshold degradation and predict
functional failures.

5. Prognostic Assessment (PA): Uses the parametric
signal estimates from DIAD to forecast future signal
values and identify potential signal faults.

6. Symbolic Data Model (SDM): Receives discrete data
and constructs an internal state estimate of the system.
It detects discrete signal mismatches (explicit faults)
and identifies system mode for use by other
components,

7. Predictive Comparator (PC): Combines signal
implications from the CD and DIAD as well as discrete
reports from SDM in an attempt to unify results from
the signal-based and symbolic reasoning components.

8. Causal System Model (CSM): Backtracks implications
along the system structure to reduce the complexity of
fault reports. This is a simplistic form of diagnosis.

9. Interpretation Layer (IL): Fuses results from different
components and constructs a final report. It serves as
an interface between BEAM and other components.

3. DYNAMICAL INVARIANT ANOMALY DETECTOR

The Dynamical Invariant Anomaly Detector is a component
of BEAM designed to identify and isolate anomalies in the
behavior of individual sensor data. The full mathematical
details of the DIAD can be found in [2]. Traditional
methods detect abnormal behavior by analyzing the
difference between the sensor data and the predicted value.
If the values of the sensor data are deemed either too high or
low, the behavior is abnormal. In our method, we introduce
the concept of dynamical invariants for detecting structural
abnormalities.

Dynamical invariants are governing parameters of the
dynamics of the system, such as the coefficients of the
differential (or time-delay) equation in the case of time-
series data. Instead of detecting deviations in the sensor
data, which can occur simply due to different initial
conditions or external forces, i.e. operational anomalies, we
attempt to identify structural changes or behavioral changes
in the system dynamics. While an operational abnormality
will not lead to a change in the dynamical invariants, a true
structural abnormality will lead to a change in the dynamical
invariants. In other words, the detector will be sensitive to
problems internal to the system and not external
disturbances.

We start with a description of a traditional treatment of
sensor data given in the form of a time series describing the
evolution of an underlying dynamical system. The method
assumes that the dynamics are captured in the sensor data. It
will be assumed that this time series cannot be approximated

by a simple analytical expression and does not possess any
periodicity. In other words, for an observer, the future
values of the time series are not fully correlated with the past
ones, and therefore, they are apprehended as random. Such
time series can be considered as a realization of an
underlying stochastic process, which can be described only
in terms of probability distributions. However, any
information about this distribution cannot be obtained from
a simple realization of a stochastic process unless this
process is stationary - in which case, the ensemble average
can be replaced by the time average. An assumption about
the stationarity of the underlying stochastic process would
exclude important components of the dynamical process
such as linear and polynomial trends, or harmonic
oscillations from consideration. Thus we develop methods
to deal with non-stationary processes.

—p Stationarization »
xl

Noise Model

\ 4

Linear Model

¥, =Vx, =x,-x_ =(1-B)x,

N S X
k=]

Figure 2. Data flow diagram for Dynamical Invariant
Anomaly Detector.

The data flow diagram is shown in Figure 2. First, the
sensor data are stationarized using the difference operator
(3]. Then the stationarized data is fed into a memory buffer,
which keeps a time history of the sensor data for analysis.
We study the critical signals, as determined by the symbolic
components of BEAM, the operating mode. The relevant
sensor data is passed to the autoregressive parameter
estimator. The autoregressive process is given by:

x(t)=ax(t-D+a,x(t—-2)+... .
+a, (t—n)+z(t) > D

where a; are the parameters, i.e., dynamical invariants, and
z(t) represents the contribution from white noise. The
dynamical invariants, a;, are computed using the Yule-
Walker equations.

Once the parameters are computed, they are compared to the
ones stored in a model parameter database. This contains a
set of nominal time-delay equation coefficients appropriate
for particular operating mode. A statistical comparison is
made between the stored and just-computed coefficients,
and if a discrepancy is detected, i.e., a parameter value
exceeds the nominal confidence limit, the sensor data is
identified as being anomalous.

Further analysis can be carried out on the residual or the
difference between the sensor data values and the model
predicted values, i.e. the uncorrelated noise, using a
nonlinear neural classifier and/or noise analysis techniques.

The nonlinear neural classifier is designed to extract the
nonlinear components, which may be missed by the linear
Yule-Walker parameter estimator. The weights of the
artificial neural network, another set of dynamical
invariants, will be computed and compared with nominal
weights stored in the model parameter database. Similarly,
the noise characteristics, such as the moments of probability
distribution, are dynamic invariants for the stationarized
sensor data, and can be compared with those stored in the
Model Parameter Database. If any anomalies are detected in
either the nonlinear components or the noise, the identity of
the sensor will be sent to the channel anomaly detector.

4. SPACE SHUTTLE MAIN ENGINE

The cluster of three SSMEs mounted on the aft of the Space
Shuttle orbiter is an integral and primary element of the
Space Shuttle propulsion system. The SSME is a high
energy density reusable rocket engine employing cryogenic
liquid hydrogen and liquid oxygen as propellants. It is
capable of a broad range of throttle settings, allowing it to
meet the requirements for dynamic load mitigation during
launch ascent, and simultaneously control engine thrust level
and engine mixture ratio via closed-loop control systems.
The SSME of today is the product of over a quarter century
of development evolution, hundreds of thousands of seconds
of accumulated ground test time, and well over one hundred
successful Space Shuttle launches.

The SSME consists of a dual-preburner, staged combustion
cycle driven by a combination of propellant boost pumps
and high-pressure turbopumps. The structural backbone of
the SSME, the powerhead, supports the three combustion
chambers within the engine and provides mounting location
for the two high-pressure turbopumps. Also part of the
engine package are the two low-pressure turbopumps, five
hydraulic/pneumatic control valves and actuators, high and
low connecting pressure ducts, and the regeneratively cooled
nozzle extension.

An on-board controller is mounted to each engine. This unit
acts as the active, closed-loop control device and is the
collection site for the engine instrumentation data during an
engine firing. SSME instrumentation, approximately 90
measurements including pressures, temperatures, rotational
speeds, and accelerometer data, falls within three general
categories: those used for engine thrust and mixture ratio
control, those used to protect engine structural limits
(redlines), and those used for data analysis and hardware
maintenance.

The operation of the SSME can be viewed as consisting of
four phases. The first phase of the operation is the pre-start
period during which the engine is purged and conditioned
with the cryogenic propellants. This phase is crucial for a
reliable and consistent engine start. The second phase of the
operation is the start phase. This period of approximately

six seconds spent on the launch pad as the thrust builds to
nominal, steady state operation provides for an opportunity
to ensure the proper operation of the engine prior to leaving
the ground. The third phase of the operation, called
mainstage, is where the SSME provides thrust to the ascent
of the Space Shuttle and lasts nearly nine minutes. And
finally, the fourth phase of the operation is engine shutdown,
which is a controlled exercise in making the safe transition
from powered ascent to orbital operations.

The components that make up each SSME are demonstrated
to be worthy of launch operations through full engine system
testing conducted at the NASA Stennis Space Center in
Mississippi. Here, on test stands customized to simulate
launch conditions, tests of flight hardware are conducted
along with other tests intended to ensure proper engineering
characterization of engine component reliability.

5. TRAINING

For the SSME data analysis, a custom MATLAB application
with a graphical user interface was developed for DIAD
training and evaluation as shown in Figure 3. The
application is menu driven and features a complete set of
tools necessary for stationarizing and modeling the sensor
data.

& Main - S5ME LPEP{£) 2001 J01 -
‘Fle Dislay Teab Tiiies R

)
= = -
Gan il o e g

Chan (1) 287

Diff Order

/0 =0 4
Time

Figure 3. DIAD GUIAé[)))pllication.‘

The training of DIAD is entirely data-driven. DIAD is
trained with examples of nominal operating data covering
the major phases and modes of operation for each channel.
For the SSME application, the DIAD was trained using
sixteen nominal ground test data from Block II engine
series. The tests covered various power levels (100, 104.5,
106, 109, 111% thrust levels) as well as several different
engines. Each test data contained 100 channels of sensor
data covering the major subsystems on the SSME. DIAD
monitored 86 critical engine sensors out of the 100 sensor
data. Fourteen channels were control parameters such as

engine commands to identify the mode of operation. The
two critical control parameters were the Engine Status Word
and Commanded Main Combustion Chamber Pressure.
They were used to deduce and identify the phase, mode, and
power level of the engine.

The training steps for DIAD were identical for each channel
of the 86 channels. They are as follows:

1. Segment the data by the phase, mode, and power level.
For main stage phase, five power level bins, centered at 100,
104.5, 106, 109, and 111%, were used. The bin centers
were located at the power level settings normally
encountered during ground testing as shown in Figure 4. A
temperature sensor data has been segmented for main stage
phase, normal control mode, and 109% power level.

“4Maitt - SSMELOER (€) 200
iFle Display Train (kilties: |

DI Sider

— Phase |,
— Mode
......... Plevel

Figure 4. Segmented data. The data has been segmented for
main stage phase, normal control mode, and 109% power
level.

2. Compute the best difference order to stationarize the
data. The order of differencing can be estimated using the
Partial Auto-Correlation (PAC) function as shown in the left
column plots in Figure 5. Refer to [3] for more details on
PAC. The best differencing order is usually the one that
minimizes the sum of the PAC as shown in the upper right
plot in Figure 5. In this case, the first order differencing was
the best order. The bottom right plot is the Power Spectral
Density (PSD) plot of the data. If there are any strong peaks
in the PSD, seasonal differencing, i.e., periodic differencing,
is required. The current version GUI version of DIAD does
not support seasonal differencing so the plot is currently for
diagnostics only. Fortunately, the sensor data in the case of
SSME did not show any strong periodic components.

Partial Autororrelation - SSME LPER

Figure 5. Computatlon of the best difference order to
stationarize the data.

3. Estimate the order of the Autoregressive (AR) model.
The order of the AR model can be estimated again using the
PAC. For a given sampling window size, it is possible to
estimate the order of the model by simply computing the
standard error limits of the PAC [3]. In the example above,
the estimated order is two using a sampling window size of
100 samples. The model fit is shown in the middle plot of
Figure 6. The green line is the estimated data using the
second order AR model. The bottom plot shows the residual
or the noise component. This component is characterized by
its moments.

#1AR Model - SSMEEREP (13 200

Figure 6. Original versus estimated data using AR model.

4. Compute the mean and confidence level of the AR
parameters. As shown in Figure 7, the mean and the 99%
confidence level of the AR parameters are shown by the
solid blue and dashed red lines, respectively. These values
are computed by moving a window of size 100 samples by
increments of 10 samples. These are the nominal values of
the parameters. If the parameters exceed the 99%
confidence level, the channel will be tagged as anomalous.
For ease of computation, the sum of the AR parameters

(shown in the bottom plot) is used for monitoring the data
for anomalies.

Figure 7. Mean aﬁd the 99% confidence level for the AR
paramcters.

These steps complete the training of the DIAD. As noted
above, they are carried out for each channel. Since there are
86 channels, this process can be quite laborious. Therefore,
an auto-training feature was added which automated the
process. That is the user simply selects the phase, mode,
and power level, and the rest is done automatically.

There are some caveats to training in terms of the data sets.
First, insufficient data training will result in false alarms,
indicating novelty, until data collection and review during or
before flight operations produce a sufficiently large data set
to cover all nominal operating modes. Second, the method
is only likely to be effective if the system dynamics are
captured in the sensor data. If the sensor has too much noise
or is purely random, the DIAD may have difficulty
extracting any useful information out of the signal. Finally,
if there is too much variation between different systems, e.g.
variation between different engines of an identical model,
DIAD can become somewhat insensitive. This issue is
revisited in the next section.

6. RESULTS

After training DIAD using sixteen nominal test data from
Block II engine series, its anomaly detection capabilities
were evaluated on seven different anomalous data sets.
These test data contained some of the most commonly
encountered anomalies in SSME testing. These include
High Pressure Fuel Turbo Pump (HPFTP) blade failure,
Low Pressure Fuel Turbo Pump (LPFTP) and HPFTP
cavitation, High Pressure Oxidizer Turbine (HPOT)
performance shift, fuel flowmeter shift, frozen sense lines,
and deactivated sensors.

For anomaly detection, we first compute the difference sum
of the current and nominal AR parameters (stored in the

Model Parameter Database), C, as given by:

2

=y a,.—;i . @)

0o
where 4, are the nominal values of the parameters, and a;,

are their current values. If { exceeds I€l where € is the 99%
confidence limit of the parameters, the system is deemed
anomalous. The advantage of this criterion is in its
simplicity. It can be periodically updated, and therefore, the
health of the system can be easily monitored.

The first example of anomaly detection is a frozen sense
line. When a sensor freezes due to its cryogenic
environment, its dynamics can change as shown in Figure 8.
At time = 180 sec, the sense line freezes causing the sensor
value to drop and have different dynamics.

3600

326

280

Data character change indicating
frozen sense line.

2400

2060

0 200 600 800

400
TIME
Figure 8. Comparison between nominal versus frozen sense
line.

The normalized difference sum, t_,, is shown in the middle
plot of Figure 9. If C exceeds 1, the sensor dynamics are
anomalous. The plot shows a jump in C after time = 180

sec. The value of C persistently stays above the 99%
confidence limit throughout the remainder of the test. At

time = 415 sec, there is a large spike in { due to the sudden
jump in the sensor value as clearly shown in Figure 8. The
jump was caused when the sense line became partially
unfrozen and the sensor value jumped. However, DIAD
shows that the sensor continues to have anomalous dynamics
even after this event.

2

g
.

g
T

Chan (78): 24

H
1

1 L L) L 2 L
100 200 300 400 500 600 700

o

Iy
T

T T T
Anomafus Event

AR SUM DEV

PRI
¥
i
i
1
t
f
i

1 T 1 T i L
© 100 200 300 400 500 600
Time

Figure 9. Normalized difference sum of the current and
nominal AR parameters. The difference sum is shown in the
middle plot. Note the jump at t = 180 sec. The top plot is
the raw data while the bottom plot is the phase, mode, and
power level of the engine.

Figure 10 shows the overall system view of the sensors. The
vertical axis represents the sensor channels while the
horizontal axis is time. The colors indicate the degree of
deviation from nominal parameters. Dark blue indicates
regions where the DIAD was not trained to make proper
determination of sensor dynamics. The first 14 channels are
control parameters, so they were ignored and thus marked
dark blue. The other dark areas are regions where the DIAD
was not properly trained for the particular phase, mode, and
power level. As discussed earlier, the DIAD was trained
only for main stage phase, and normal control mode in this
evaluation. The startup (0 < t < 10 sec) and shutdown (t >
720 sec) regions are therefore marked dark blue.

The interesting anomalies are shown in red where the
difference sum exceeds the confidence limit. There are
three regions where red colors are observed. The red streaks
around channel 30 caused by bit-toggling data are due to
low analog-to-digital converter resolution, which indicate
several false alarms. These channels may need to be
modeled using a difference process, perhaps a Hidden
Markov Model.

The bright red spots at time t = 450 sec at channels 81, 84,
and 85 were caused by Gaseous Oxygen (GOX)
repressurization of the oxygen tank. This event was planned
and caused a momentary jump in the sensor data.

Finally, the persistent deviation in channel 78 is caused the
frozen sense line as shown in Figure 8. The anomaly begins
around t = 180 sec and persists throughout the test.

As demonstrated, the system view plot of anomalies gives an
analyst a bird’s eye view of the sensor dynamics. If any
sudden red color is detected, the analyst can quickly bring

up the raw sensor and individual DIAD results plots for
further analysis.

420740, dat: Dev of SUM of AR paramatera (0.5=No Match 1 O=Ignore)

Figure 10. Overall system view plot. The frozen sense line
anomaly is at channel 78 as indicated by the arrow.

180

/ Nominal

16000

Engine Fuel Flowmeter shift
14000

12000

100 100 200 300 400 500 600
vE

Figure 11. Comparison between a nominal and shifted fuel
flow meter.

Another type of common anomaly is shown in Figure 11, in
which the engine fuel flow meter has shifted. The shift is
believed to be caused by vortex shedding off the upstream
flow straighteners. There appear to be operational regimes,
very roughly analogous to resonance points, where the
vortex-to-flowmeter blade interactions cause a bistability.
Unfortunately, the precise operational conditions causing
this effect cannot be predicted with first order data analysis
and modeling them varies dramatically from unit to unit.

Examining the normalized difference sum, C, as shown in

the middle plot of Figure 12, reveals that there is a jump in C
at t = 180 sec, corresponding to the fuel flow meter shift at

the same time. It is noteworthy that the normalized did
not quite exceed the 99% confidence limit. A similar
situation was observed for a frozen sense line anomaly as
shown in Figure 13. It shows a jump in the AR parameters
at t = 275 sec corresponding to the frozen sense line.

However, the parameters did not exceed the 99% confidence
limit.

5 [i
i ~

S AT S T A A,]
[]'mﬂrwfwv\mf Wy
B =

o} N 4

100 200 300 00 s00 &0
Tima

Figure 12. Normalized difference sum of the current and
nominal AR parameters. The difference sum is shown in the
middle plot. Note the jump at t = 180 sec. The top plot is
the raw data while the bottom plot is the phase, mode, and
power level of the engine.

The cause can be traced back to the large variations in the
training data used in the training procedure. In certain
cases, the variability in some sensor data between different
engine tests (training files) was so large that the 99%
confidence limit was set very wide during training, resulting
in an insensitive detector. While the majority of the sensor
data were consistent across various engines, certain sensor
characteristics were unique to each engine. Unfortunately,
these variations from engine to engine may be unavoidable
since each engine is uniquely assembled.

The solution to this problem may be addressed in one of two
ways. First is to have unique training set for each engine.
The drawback of this solution is that a unique set of nominal
parameters is required for each engine, which may lead to
logistical and bookkeeping difficulties. In addition, anomaly
detection is not possible on a new engine until it is fully
tested at each operating condition.

The solution we are currently pursuing is to look for clusters
of nominal parameter values. It has been observed that
some sensor data dynamics exhibit clustering behavior. In
other words, certain groups of engines exhibit similar sensor
behavior. This is reasonable since Block II engines are built
in small production runs. Within each production run, the
engines may be very close to each other. The solution is to
build a set of selected parameters that best match the engine
production run. This will require a clever clustering
algorithm which we are in the process of developing and
evaluating,

AR Ordas 1 DF Ori. § Chan (7). 58
T T T T T T

o
T T T T T

&
T T T

3 e &

™

Figure 13. Mean and the 99% confidence level for the AR
parameters during a frozen sense line anomaly at t = 275
sec.

In the seven anomalous data files, the DIAD was able to
detect anomalies in each of the files. DIAD was able to
detect all of the major anomalies, including HPFTP blade
failure, HPFTP and LPFTP cavitation, HPOT performance
shift, fuel flowmeter shift, frozen sense lines, and
deactivated sensors. There were a couple of exceptions.
DIAD was not able to identify, namely, the anomaly in the
HPFTP during fuel turbine pump cavitation event. It was,
however, able to detect the cavitation in the LPFTP. In
addition, DIAD was able to detect some of the minor
efficiency shifts in the HPOT. The cause of these
deficiencies was the large variation in the training data.
Overall, the DIAD was able to detect all of the major
anomalies in the seven anomalous data.

7. CONCLUSION

The DIAD module of BEAM was used to analyze SSME
ground test data. A customized GUI version of BEAM was
developed for the purpose of evaluating SSME ground test
data. DIAD detects anomalies by computing and examining
the coefficients of an auto-regressive model. DIAD was
trained using sixteen nominal test firing data from Block II
engine series. It was then used to detect anomalies in seven
different test data that contained some of the most
commonly encountered anomalies in SSME testing.

In the seven anomalous data files, DIAD was able to detect
anomalies in each file. DIAD detected all the major
anomalies including HPFTP blade failure, LPFTP and
HPFTP cavitation, HPOT performance shift, fuel flowmeter
shift, frozen sense lines, and deactivated sensors. There
were a couple of exceptions. DIAD was not able to identify
the anomaly in the HPFTP during fuel turbine pump
cavitation event. It was, however, able to detect the
cavitation in the LPFTP. DIAD was also able to detect

some of the minor efficiency shifts in the HPOT. The cause
of these deficiencies was found to be the large variations in
the sixteen training data files. The large variability in some
sensor data between different engine tests forced the
anomaly threshold level to very high values, resulting in an
insensitive detector. Overall, the DIAD was sensitive to all
of the major anomalies in the seven anomalous data and
detected the shift in the data characteristics. However, a few
of the anomalies were missed due to the high anomaly
threshold from large variability in the sensor data during
training.

The future improvement to DIAD will focus on the problem
of variability in the sensor data among engines. One
solution is to classify nominal behavior clustering of
nominal parameter values. In other words, certain groups of
engines appear to exhibit similar dynamical behavior. This
is reasonable since Block IT engines are built in small
production runs. This will require a clever clustering
algorithm, which we are in the process of developing and
evaluating.

REFERENCES

[1] Mackey, R., James, M., Park, H. G., Zak, M., “BEAM:
Technology for Autonomous Self-Analysis,” TEEE Aerospace
Conference, Big Sky, Montana, March 2001.

[2] Zak, M., Park, H. G., “Gray-box Approach to Fault Diagnosis
of Dynamical Systems,” IEEE Aerospace Conference, Big Sky,
Montana, March 2001.

[3] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, Time Series
Analysis, Upper Saddle River, New Jersey, Prentice Hall, 1994.

Han Park is a senior member of the technical staff in the
Ultracomputing Technologies Research Group in the
Information and Computing Technologies Research Section
at the Jet Propulsion Laboratory, California Institute of
Technology. He joined JPL in 1999 and performs research
and development of fault detection/diagnosis algorithms for
aircraft and spacecraft systems. He received his B.S. in
M.E. at the University of California at Berkeley, SM. in
M.E. at MIT, and Ph.D. in Aeronautics at the California
Institute of Technology. His research interests are in the
areas of vehicle health monitoring, signal processing, image
processing, pattern recognition, color recognition,
quantitative visualization, fluid mechanics, and heat
transfer.

Ryan Mackey received his B.A. degree from the University
of California at Santa Cruz (1993) for Mathematics and
Physics, and went on to an M.S. (1994) and Eng. (1997) in
Aeronautics at Caltech. He is presently a senior researcher
and charter member of the Ultracomputing Technologies
Research Group at the Jet Propulsion Laboratory. His

research centers upon revolutionary computing methods
and technologies for advanced machine autonomy,
specifically deep space missions, UAVs and maintainable
aerospace vehicles. His interests also include quantum- and
biologically-inspired computing.

Mark L. James is a senior researcher of the
Ultracomputing Technologies Research Group at Jet
Propulsion Laboratory. At JPL he is Principal Investigator
in real-time inference and knowledge-based systems. His
primary research focus is on high-speed inference systems
and their application to planetary and deep spacecraft
systems. His expertise includes core artificial intelligence
technology, high-speed real-time inference systems and
flight system software architectures. He has received a
number of NASA awards that include NASA Software of the
Year Award Nominee.

Michail Zak is a senior research scientist in the
Ultracomputing Technologies Research Group at the Jet
Propulsion Laboratory, California Institute of Technology.
He has been with JPL since 1977. His research interests
include non-linear dynamical system theory, chaos theory,
quantum information processing, neural networks, and
complex systems theory. He is the author of over 150
scientific and technical papers, and research monographs.

Michael H. Kynard is an engine systems engineer within
the SSME project office at NASA’s Marshall Space Flight
Center. He joined NASA/MSFC in 1985 and has held
positions as software engineer for the SSME Main Engine
Controller, lead engineer for the SSME resident office at
Stennis Space Center, and lead SSME systems engineer for
the Propulsion Laboratory at MSFC. He received his B.S. in
Electrical Engineering from The University of Alabama.

John M. Sebghati is a Subtask Lead for SSME Systems on
the Vehicle and Systems Development Team of the MSFC
Group of Sverdrup Technology, Inc. He joined Sverdrup in
1999 and is responsible for providing SSME test and launch
support. He has also provided support for the testing of the
Linear Aerospike Engine (XRS-2200). He received his B.S.
in Aerospace Engineering at lowa State University and an
M.S. in Aerospace Engineering at the University of
Tennessee.

William D. Greene is a Team Lead within the Engine
Systems Performance Group of the Space Transportation
Directorate, NASA Marshall Space Flight Center. He
Joined NASA in 2000 after spending ten years with
aerospace and defense contractors working on a diverse
array of programs including cryogenic propellant
densification, launch vehicle main propulsion systems,
liquid propellant large caliber gun internal ballistics, and
liquid and hybrid rocket engine performance. He received
his B.S. and M.S. in Aerospace Engineering from the
Pennsylvania State University.

